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Abstract

Issues related to applicability of model predictive control (MPC) to the nonlinear and integrating processes are addressed in this study. An
industrial four-stage evaporator system is taken as an exemplary process, and two different models of this system are used as process and its
prediction model in the controller. Unlike the past studies, where the necessity of stabilization is advocated prior to MPC implementation
on an open-loop unstable process, nonlinear MPC without any pre-stabilization is successfully achieved by using process state variables
for initialization, suitable prediction horizon and sampling period. However, steady state offset was observed. A useful offset removal
technique is proposed and implemented successfully. Performance of NMPC is compared with that of decentralized controllers for the
evaporator system, and the results show that both can provide comparable control.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Industry has widely accepted model predictive control
(MPC) as a powerful feedback control strategy which is
well suited for high performance control of constrained
multivariable processes because explicit pairing of input
and output variables is not required. Moreover, process con-
straints and time delays can be incorporated directly into
the associated open-loop optimal control problem. Popular
MPC techniques include dynamic matrix control (DMC) [6]
model algorithmic control (MAC, also known as IDCOM)
[33], generalized predictive control (GPC) [4,5], extended
prediction self-adaptive control (EPSAC) [8], Peterka’s [31]
predictive control and multivariable optimal constrained
control algorithm (MOCCA) [38]. Since their inception,
MPC strategies have steadily gained industrial popularity.
Shell oil company employed MPC algorithms in their fluid
catalytic cracker unit [23,32]. Lebourgeois [21] described
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application of IDCOM identification and control algorithm
to the running sections of a PVC plant at Rhone-Poulenc fac-
tory in Lavera, France. Engrand [9] implemented IDCOM as
a standard control package for a crude distillation which is
characterized by large dead times and high interaction of the
controlled variables. Details and features of some of these
industrial MPC controllers are available in the recent book
by Camacho and Bordons [2]. Mehra et al.[27] reviewed a
number of applications of MPC including superheater, steam
generator, wind tunnel, boiler, distillation column, glass fur-
nace etc. Other industrial applications include hydrocracker
reactor [7,23]. Ohshima et al. [28] applied a multirate, multi-
variable MPC to a semi-commercial polymerization reactor.

In all the above studies and applications of MPC, pro-
cess model is assumed to be linear, which restricted use
of MPC to linear and mildly nonlinear processes. Since
systems with moderate to strongly nonlinear dynamics are
often encountered in chemical process industry, there is a
need for nonlinear model-based control to achieve tighter
control of these processes. Recognizing this need, a num-
ber of MPC algorithms incorporating nonlinear prediction
models (hence called as nonlinear MPC or NMPC) have
appeared in the literature in the last decade, e.g., [1,24,30].
A comprehensive review of NMPC including its applica-
tions to simulated examples, experimental processes and a
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Nomenclature

c specific heat capacity
h flash tank level
ṁ mass flow
M control horizon
P prediction horizon
Q volumetric flow
T liquor temperature, sampling period
u, U manipulated input variable
x, X state variable
y controlled output variable

Greek letters
ρ liquor density
Φ objective function

Subscripts
F feed
p process
P liquor product
r setpoint
S steam
V vapour
W water

few industrial processes, is available in [11]. This review
shows that reported simulation and experimental studies on
NMPC are for small size problems, often for single-input
single-output or two-input two-output reactor applications.
A significant exception is the study of Ricker and Lee [34],
who studied NMPC of Tennessee Eastman plant. However,
the nonlinear process model was linearized at each sam-
pling instant for prediction and control. A similar strategy
was recently employed by Wang et al. [39] for control of
optimal grade transition of polymerization reactors.

The broad objective of the present study is to apply
and evaluate NMPC for an industrial four-stage evaporator
system. A continuous evaporator process is important
in several chemical and mineral processing industries.
Recently, Kam and Tadé [15] presented two mechanistic
models (referred to as M1 and M2) of a multieffect evapora-
tor system in an alumina refinery. Model M1 has more com-
plex dynamics and is control nonaffine in nature, whereas
model M2 is developed with a few additional assumptions
and is control-affine. In the control study of the evaporator
system using feedback linearization [16,17], model M1 was
used as the “real” process and model M2 as the “model” of
the process in the controller design. This implementation
introduces both structural and parameter mismatch between
the process and the model. Comprising of numerous state,
input and output variables, and having severe nonlinearity,
these evaporator models provide a rigorous base for MPC
studies on moderate size systems.

An interesting characteristic of models M1 and M2 is that
they are open-loop unstable in nature [17], and is mainly

due to integrating characteristics of liquid level in the
evaporator tanks. This along with the mismatch between
models M1 and M2 poses a challenge in the application
of NMPC. In conventional MPC, effect of process/model
mismatch is reduced by adding the difference between the
model prediction and the latest plant measurement to the
value predicted by the model. This can result in slow con-
trol and limit applicability of conventional MPC to open
loop stable plants only. However, possibility of employing
MPC for unstable systems is not completely ruled out as
can be seen from the studies of several researchers, e.g.,
[10,26,29,37,40]. Zheng and Morari [40] derived stability
conditions for MPC with hard constraints on inputs and soft
constraints on the outputs for an infinitely long prediction
horizon. They showed that MPC is “globally” asymptotically
stabilizing if and only if all the eigen values of the open-loop
linear system are strictly inside the unit circle. However,
similar proof for a nonlinear system is not available in the
literature. Gobin et al. [10] studied linear MPC (DMC)
through simulation for driving two industrial polymeriza-
tion reactors in series from a stable to an unstable operating
point. Although the authors stated that they were successful
in implementing MPC around an unstable operating point
without making any modification of control loop structure
(such as stabilizing the process in a cascade arrangement),
complete details of implementation are not reported.

Özkan and Çamurdan [29] argued that the control of the
process around an unstable point using a MPC is not pos-
sible since the internal stability condition for implementing
these controllers, is not fulfilled. Some compensation is,
therefore, necessary before the MPC algorithm can be im-
plemented. They implemented DMC for a CSTR in a cas-
cade arrangement. In the inner loop, the process is stabilized
around the unstable point using a proportional controller,
and the stabilized process is controlled by DMC in the outer
loop. Similar approach was reported by Sriniwas and Arkun
[37]. They presented a case study where MPC is applied to
control a nonlinear open-loop unstable process, viz. the Ten-
nessee Eastman Process. Control of this process by NMPC
was studied by Ricker and Lee [34] too; however, feedback
stabilization and cascade loops were necessary for this. Thus,
MPC in these applications acts as a supervisory controller
that dictates the setpoint of the system for a lower level PID
loop, and MPC is applied to a stable closed loop process.

Meadows and Rawlings [26] employed NMPC for a flu-
idised bed reactor for controlling the system at an unstable
steady state. However, their manipulated variable is not a
physical quantity, rather an expression which ensures stabi-
lization of the original unstable system through proportional
controller gain. This arrangement is similar to the linear
MPC application for CSTR by Özkan and Çamurdan [29]
and Tennessee Eastman problem by Sriniwas and Arkun
[36]. Camacho and Bordons [2] stated that MPC strategy
can be applied to unstable systems as well. Nevertheless,
they remarked that the key to success in such cases lies
with the apposite modelling of the system to be controlled.
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Very recently, Mayne et al. [25] surveyed stability and
optimality for constrained MPC (both linear and nonlinear).
From an extensive literature, they distilled essential princi-
ples that ensure stability, however, the discussion is limited
to open-loop stable processes.

Hence, the potential and efficacy of NMPC is studied
extensively in this paper for moderate size, nonlinear, open
loop unstable evaporator system without using feedback
linearization or stabilization and retaining the integrating
characteristic of the process while solving the optimal
control problem. In order to simulate practical situations
and as was done earlier [16,17], the simpler model M2 is
used for controller design in the present study too and its
efficacy is tested by implementing on the more detailed
model M1. A simple adaptation strategy is proposed and
tested for eliminating the offset. Control performance of
the resulting NMPC is studied for several disturbances ex-
pected in the plant, and compared with that of decentralized
proportional-integral (PI) controllers.

Industrial implementations of MPC are generally for large
systems with many units, inputs, outputs and constraints.
They are often based on linear models and are part of a
multilevel hierarchy of control functions such as lower-level
PID loops, upper-level optimizer. Recently, Lee et al. (2000)
[22] discussed the relative merits of two options for inter-
facing MPC with low-level loops: MPC manipulates control
valves directly (option A) and MPC manipulates setpoints of

Fig. 1. A simplified schematic of the evaporator system.

lower-level loops (option B), and suggested modifications to
overcome the deficiencies of each option. Simulation results
in Lee et al. (2000) show that modified option A is com-
parable to or better than others. Further, valve constraints
can be incorporated directly in modified option A; but im-
plementing MPC directly may be difficult for fast loops.
Hence, in this study, NMPC is implemented on the simu-
lated evaporator system for all controlled variables directly
(without lower-level PID loops) to gain the maximum ben-
efit of NMPC and to check the viability of NMPC even for
relatively faster level loops.

2. Multistage evaporator system

The selected evaporator system is the first step in the
liquor burning process associated with the Bayer process
for alumina production at the Wagerup alumina refinery
in western Australia. It consists of one falling film, three
forced-circulation and a super-concentration evaporators in
series. The main components of each stage are a flash tank
(FT), a flash pot and a heater (HT). A simplified schematic
of the evaporator system is depicted in Fig. 1. Flash pots
are not shown in this figure for simplicity of the schematic.
Spent liquor, which is recovered after precipitation of the
alumina from its solution, is fed to the falling film stage (FT
#1). The volatile component, water in this case, is removed
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under high recycle rate and the product is further concen-
trated through the three forced-circulation stages (FT #2–4).
The super-concentration stage (FT #5) is used to remove the
residual ‘flashing’ of the concentrated liquor without recycle.

In each of the forced-circulation and super-concentration
stages, the spent liquor is heated through a shell and tube
heat exchanger (heater) and water is removed as vapour at
lower pressure in the FT. The vapour given off is used as the
heating medium in the heaters upstream. The flashed vapour
from FT #3 and 4 are combined and used in HT #2 while
the vapour from FT #2 is used in HT #1. The flashed vapour
from FT #5 is sent directly to the condenser, C in Fig. 1. The
steam condensates from the heaters are collected in the flash
pots. Live steam is used as the heating medium for HT #3, 4
and 5. Live steam to HT #3 is set in ratio to the amount of live
steam entering HT #4, while the amount of live steam to HT
#5 is set depending on the amount of residual ‘flashing’ to be
removed. The cooling water flow to the contact condenser,
C is set such that all remaining flashed vapour is condensed.
The evaporator system is crucial in the aluminium refinery
operation and is difficult to control due to recycle streams,
strong process interactions and nonlinearities.

2.1. Models for the evaporator system

Kam and Tadé [15] have developed two mathematical
models, M1 and M2 for the evaporator system using un-
steady state mass and energy balances around the units in
Fig. 1. The differences between M1 and M2 are due to dif-
ferent assumptions that were used in their development. As
was done by Kam and Tadé [16], the models for and con-
trol of the first four stages only are considered in the present
study too. Each of the two models for the first four stages
consists of 12 ordinary differential equations with five input
and five output variables. The state, input and output vari-
ables for the two models are summarized in Table 1. Due
to proprietary reasons, the actual values of these variables
are multiplied with an arbitrary factor. However, this change
does not alter the basic characteristics of the models. Note

Table 1
State, input and output variables and their nominal values for the evapo-
rator system

State Value Input Value Output Value

x1, h1 1.5 m u1, QP1 32.736 m3/h y1, h1 1.5 m
x2, h2 2.25 m u2, QP2 27.713 m3/h y2, h2 2.25 m
x3, h3 2.25 m u3, QP3 23.850 m3/h y3, h3 2.25 m
x4, h4 2.25 m u4, QP4 21.642 m3/h y4, h4 2.25 m
x5, ρ4 1.54 g/cm3 u5, ṁS4 2.3814 m3/h y5, ρ4 1.54 g/cm3

x6, T1 66.0◦C
x7, T2 90.6◦C
x8, T3 129◦C
x9, T4 135◦C
x10, ρ1 1.357 g/cm3

x11, ρ2 1.422 g/cm3

x12, ρ3 1.49 g/cm3

that the values of the variables in Table 1 are only approxi-
mate steady state values; exact values depend on the model
selected, and will have to be obtained in each case. The con-
trolled and manipulated variables (y’s andu’s, respectively)
were selected according to the actual plant configuration.
In the plant, all these manipulated inputs and the controlled
outputs are measured online. Additionally, on-line measure-
ments of the product liquor temperatures of the first four
stages (T1, T2, T3, T4) are available.

2.2. Model M1

Development and complete details of the model M1 are
available in [15]. Hence, only the equations for the second
stage of the evaporator system are presented here.

dh2

dt
= 1

A2

[
QP1 −QP2 − E2

ρW

]
(1)

dρ2

dt
= 1

h2A2

[
E2

(
ρ2

ρW
− 1

)
−QP1ρ1

(
ρ2

ρ1
− 1

)]
(2)

dT2

dt
= 1

CoT2

[
1

(V2 − h2A2)

×
(
E2 − ṁV2 + ρV2

(
QP1 −QP2 − E2

ρW

))]

− 1

CoT2

[
CoRho2

(
1

h2A2

(
E2

(
ρ2

ρW
− 1

)

−QP1ρ1

(
ρ2

ρ1
− 1

)))]
(3)

where

E2 = QP1ρ1c1T1 −QP2ρ2c2T2 + ṁS2λS2

λV2
(4)

BPE2 = 102.69ρ2 − 128.82 (5)

ρV2 = MP2

R(273.1 + T2 − BPE2)
(6)

P2 = 0.133 exp

(
A− B

C + 273.1 + T2 − BPE2

)
(7)

CoT2 = ρV2

(
B

(C + 273.1 + T2 − BPE2)2

− 1

(273.1 + T2 − BPE2)

)
(8)

CoRho2 = −102.69ρV2

(
B

(C + 273.1 + T2 − BPE2)2

− 1

(273.1 + T2 − BPE2)

)
(9)

The constantsM andR are the molecular mass of water and
the gas constant, respectively, andA, B andC are constants
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in the Antoine equation for the vapour pressure–temperature
relation of water vapour.

The flashed vapour from FT #2 is used in HT #1. As such,
the amount of vapour that is drawn from FT #2 (i.e.ṁV2)
depends on the amount of condensation due to heat exchange
with the liquor in HT #1. The rate of vapour withdrawal
from FT #2 is given as

ṁV2 =
QHF1ρHF1cHF1(TS1 − (TS1 − THF1)

×exp(−UA1/QHF1ρHF1cHF1)− THF1)

λS1
(10)

where the subscript HF and S refer to heater feed and steam,
respectively. The steam temperature in HT #1 (i.e.TS1) is
the same as the saturation temperature of the flashed vapour
from FT #2,

TS1 = T2 − BPE2 (11)

The liquor density (ρHF1) and temperature (THF1) in FT #1
are obtained from mass and energy balances at the mixing
point as follows:

THF1 = R1c1T1 +QFρFcFTF

QHF1ρHF1cHF1
(12)

ρHF1 = R1 +QFρF

QHF1
(13)

The recycle rateR1 is set to a constant.
Evaporation rateE2 in Eq. (4) depends on the amount of

steam condensing in HT #2, which is equal to the amount
of flashed vapour from FT #3 and FT #4 (i.e.,ṁS2 = ṁV3 +
ṁV4), and is also governed by the rate of heat transfer in
HT #2 given by

ṁS2 =
QHF2ρHF2cHF2(TS2 − (TS2 − THF2)

×exp(−UA2/QHF2ρHF2cHF2)− THF2)

λS2
(14)

where

TS2 = T3 − BPE3 (15)

THF2 = R2c2T2 +QP1ρ1c1T1

QHF2ρHF2cHF2
(16)

ρHF2 = R2 +QP1ρ1

QHF2
(17)

2.3. Model M2

Additional assumptions are used to simplify model M1 to
model M2, and equations for all the five stages are available
in [15]. Several equations of model M2 are the same as that
of model M1. For example, model equations for the second
stage are Eqs. (1) and (2), and the following.

dT2

dt
= 1

CoT2

(
E2 − ṁV2 + ρV2

(
QP1 −QP2 − E2

ρW

))

(18)

The quantities in these equations are the same as given along
with model M1 except Eqs. (7), (8), (12) and (14), which
for model M2 are:

CoT2 = (V2 − A2h2)

(
1.58M

R(273.1 + T2 − BPE2)

− ρV2

(273.1 + T2 − BPE2)

)
(19)

ṁS2 = ṁV3 + ṁV4 (20)

ṁV2 = E2 (21)

P2 = 1.58T2 − 105.77 (22)

The value of BPE2 is constant (=16) for model M2. The
model equations for the liquor temperature of model M2 in
Eqs. (18) and (19) are considerably simpler than Eqs. (3)
and (8) of model M1. The simplification is due to the
additional assumptions that the boiling point elevation
(BPE) is independent of the liquor density and that the
vapour pressure–temperature relation of the flashed vapour
is linear (Eq. (22)), which was obtained by local lineariza-
tion of Eq. (7) at the nominal liquor temperature. Another
noticeable difference between the model equations of the
two models is the steam flow to HT #2 and the vapour with-
drawal rate from FT #2. Note that the vapour withdrawal
rate in model M2 is equal to the rate of evaporation in the
FT (i.e. Eq. (21)), and hence it does not depend on the heat
transfer rate in the heater.

Inspection of level dynamics (Eq. (1)) shows that both
models M1 and M2 will have integrating characteristics.
Furthermore, Kam and Tadé [15] showed that the local
linear model of M2 at the nominal steady state, has some
poles in the right half plane. Thus models M1 and M2 of
the evaporator system have unstable open-loop behaviour.
These results and all equations of models M1 and M2 are
also available in [18], who discuss the use of both models
for education and research in process control. Open-loop
responses of model M1 and M2 for a step change in steam
flow rate to stage 4 (i.e.,mS4), presented in [18] show that
the two models differ significantly in the transient response
of some state variables, model gains, etc. Model mismatch
between M1 and M2 was also shown using closed-loop
simulation [18].

3. Control of the evaporator system by NMPC

In general, NMPC refers to a control problem where the
model, performance or objective function (Φ) and the con-
straints (H andQ in Eqs. (26) and (27)) are nonlinear func-
tions of state, input and output variables of the system. The
general predictive control problem can be represented as

minΦ[X(k + i), U(k + i − 1), Y (k + i), Yr(k + i)] (23)
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with respect toU(k + j) for j = 1,2, . . . ,M subject to

X(k + i + 1) = F [X(k + i), U(k + i)],
i = 1,2, . . . , P (24)

Y (k + i) = G[X(k + i), U(k + i), Yp(k)],

i = 1,2, . . . , P (25)

H [Y (k + i), U(k + i)] ≤ 0
¯
, i = 1,2, . . . , P (26)

Q[Y (k + i), U(k + i)] = 0
¯
, i = 1,2, . . . , P (27)

wherek denotes the current sampling instant,k + i denotes
the ith sampling instant in the future starting from instantk,
P andM are, respectively, the prediction and control hori-
zons (both in terms of number of sampling instants) and
U(k+ i− 1) = U(k+M) if i > M. Here, vectorsX ∈ Rn,
Y ∈ Rm, Y p ∈ Rm, Y r ∈ Rm andU ∈ Rm represent model
states, model outputs, measured outputs, setpoints and ma-
nipulated inputs, respectively. The control problem is posed
in the discrete form and the manipulated inputs are assumed
to be piece-wise constant. Eqs. (24) and (25) represent the
dynamic model of the process, which in the present appli-
cation is model M2. The other possible constraints are of
two types, viz. equality and inequality algebraic constraints
(Eqs. (26) and (27)) arising from the limits on the manipu-
lated inputs, product quality specifications or safety require-
ments. The controller is implemented in a moving horizon
framework, i.e., only the first input (atk + 1 instant) from
the future input vector obtained through optimization is used
and the whole procedure is repeated at the next sampling
instant.

The objective function, used in this work, is

Φ =
P∑
i=1

(Yr(i)− Y (i))2 (28)

There are quite a few methods of solving the optimal control
problem (Eqs. (23)–(27)) through nonlinear programming
[11]: sequential approach, simultaneous method and suc-
cessive linearization. In this work, sequential approach has
been chosen for its easy implementation. In this approach,
manipulated variables (U) are the only decision variables in
the optimization. Within a sampling period, the prediction
model is simulated again and again over the prediction hori-
zon to calculateY(i) for i = 1,2, . . . , P until the minimum
value ofΦ is obtained; and the corresponding set of decision
variables are rendered as manipulated inputs for the system
in the next sampling instant.

3.1. Implementation of NMPC

The simulation programs are developed using MATLAB
5.3 and its associated ODE solver and optimization tool-
boxes. Nelder–Mead optimization technique (fminsearch.m)
is used for unconstrained optimization. Initially, constraints

in the form of upper and lower bounds on the manipu-
lated inputs (Eq. (26)) were considered while performing
optimization. These trials were carried out with constr.m
program. However, this was found to be unnecessary be-
cause all the manipulated inputs were generally within their
upper and lower limits and never touched the constraint
boundaries. Moreover, constr.m program needs the gradient
of the objective function which is calculated numerically
by the program itself. The accuracy of gradients calculated
in this way is questionable and hence usually avoided. The
ode45.m program in the ODE solver toolbox uses 4th order
Runge–Kutta method. Windows-NT workstation with dual
Pentiun III Xeon processors each of 550 MHz was used for
simulations.

The main difficulty associated with M1–M2 combination
is that model M2 is not capable of replicating the transient
behaviour of model M1 for a long period of time. And there
could be substantial differences in the responses predicted
by the two models at larger times. This leads to a major
problem in the application of NMPC to the evaporator sys-
tem because the output predicted by model M2, while solv-
ing the optimal control problem (Eqs. (23)–(27)), should
be within an acceptable limit, i.e., large process/model mis-
match is not desirable in this stage of the calculation. In the
MPC applications, this process/model mismatch is generally
taken care of by adding the difference between the measured
process and model outputs at the latest time to the predicted
outputs in the optimization step. This strategy was not suc-
cessful in the application of NMPC to the evaporator sys-
tem. The reason was found to be the significant differences
between the state variables of models M1 (process) and M2
(used in the control) after some time. To tackle this problem,
an unconventional technique is used in the present applica-
tion of NMPC. State variables of the process are used to
initialise the model M2 calculations in the optimal control
problem at every sampling time. In the actual plant, all state
variables in Table 1 exceptρ1, ρ2 and ρ3, are measured.
If necessary, these densities can be measured by installing
suitable instruments. In the present application, therefore,
state variables of process (model M1) are assumed to be
available. Estimation ofρ1, ρ2 and ρ3 via state observer
is possible, e.g., [16], and will be considered in our future
study. Furthermore, a small prediction horizon is used in
the NMPC in order to avoid extremely large process/model
mismatch.

3.2. Load disturbances and setpoint changes

Several measured and/or unmeasured load disturbances
may occur during the operation of the industrial evaporator
system. Common disturbances are due to changes in the feed
(such as flow rate, density and temperature inF in Fig. 1)
to the evaporator system and/or changes in the heat transfer
coefficient of the heaters. Setpoint changes inρ4 are also
possible. Hence, the following regulatory and/or servo cases
are considered in the present study.
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Case 1 : Change in flow rate of feed (QF) from the nominal
value of 37.7 to 39.7 m3/h.

Case 2 : Change in flow rate of feed (QF) from the nominal
value of 37.7 to 35.7 m3/h.

Case 3 : Simultaneous change in flow rate of feed (QF)
from the nominal value of 37.7 to 39.7 m3/h and
a 15% decrease in the heat transfer coefficient,
UA in heaters 1 and 2.

Fig. 2. Control performance of NMPC for a measured and unmeasured step change in feed flow rate,QF.

Case 4 : Change in density of feed (ρF) from the nominal
value of 1.310 to 1.376 g/cm3.

Case 5 : Change in density of feed (ρF) from the nominal
value of 1.310 to 1.245 g/cm3.

Case 6 : Change in temperature of feed (TF) from the nom-
inal value of 60 to 66◦C.

Case 7 : Change in temperature of feed (TF) from the nom-
inal value of 60 to 54◦C.
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Case 8 : Change in the setpoint of product liquor density
from FT #4 (ρ4) from the nominal value of 1.54
to 1.62 g/cm3.

Case 9 : Change in the setpoint of product liquor density
from FT #4 (ρ4) from the nominal value of 1.54
to 1.46 g/cm3.

Case 10 : Simultaneous change in the setpoint ofρ4 from
1.54 to 1.46 g/cm3 and in the setpoint ofh1 from
1.5 to 1.8 m.

Fig. 3. Control performance of NMPC (with two different settings) and PI for a step change in feed flow rate (Case 1).

3.3. Tuning of NMPC and offset removal

The most crucial part in any controller design is to tune the
controller parameters to ensure good control performance.
Parameters in NMPC are sampling period (T), prediction
horizon (P) and control horizon (M). Some initial trials were
conducted for selecting suitable values for these parameters.
A load disturbance of change in flow rate of feed (QF) from
the nominal value of 37.7 to 39.7 (Case 1), was introduced in
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all these initial trials. Two values ofT (namely, 0.1 and 0.01)
were considered for selection. It is of prime importance (as
discussed earlier) to keep the prediction horizon within a
certain limit so that the prediction capability of M2 remains
reliable. It is observed through open-loop studies that the
prediction capability of model M2 is extremely poor beyond
1 h of simulation. Hence, suitable combinations ofT and
P were selected so that the prediction time of 1 h is not
exceeded. In the literature on MPC,M = 1 is a standard
choice. Thus,M = 1,T = 0.1 or 0.01, andP = 10–40 were
tried for the evaporator control by NMPC. It is observed
from these trials that control performance withT = 0.01
is not acceptable because computational time increases a
lot asP increases and small value ofP together withT =
0.01 constitutes very small prediction horizon in terms of
time which is not enough for MPC calculations. However,
computational time withT = 0.1 andP = 10 is acceptable.
Control withT = 0.1, P = 10,M = 1 is shown as dashed
lines in Fig. 2. AlthoughM = 1 is the usual choice, it can
be any integer within 1≤ M ≤ P . Hence,M = 2, 5 and
10 were tried. Resulting control was no better than that with
M = 1 (shown in Fig. 2) except that the computational time
increased with higher value ofM. Thus,T = 0.1, P = 10
andM = 1 were considered to be reasonable and selected
for the NMPC of the evaporator system.

Regulatory performance of NMPC shown in Fig. 2 is far
from satisfactory. The main problem is the offset inh1, h2
andρ4. Note that offset is observed inh3 and h4 too, but
their magnitude is negligible. Offset could be caused by pro-
cess/model mismatch and/or finite prediction horizon. The
common approach to eliminate this offset is by adding the
difference between the measured process and model outputs

Table 2
Integral squared error (ISE) values of closed loop performances for cases 1–10

Case Control ISE for Total ISE

h1 h2 h3 h4 ρ4

1 NMPC 0.0067 0.0021 0.44E−5 0.11E−5 0.20E−5 0.0088
PI 0.0018 0.0026 0.0019 0.80E−4 0.0022 0.0085

2 NMPC 0.0063 0.0018 0.17E−5 0.49E−6 0.15E−5 0.0082
PI 0.0018 0.0025 0.0018 0.76E−4 0.0026 0.0088

3 NMPC 0.035 0.026 0.63E−4 0.10E−4 0.71E−5 0.0616
PI 0.0026 0.0036 0.0031 0.17E−3 0.0055 0.015

4 NMPC 0.018 0.017 0.48E−3 0.16E−3 0.62E−3 0.0364
PI 0.0017 0.0093 0.0087 0.11E−3 0.0028 0.0226

5 NMPC 0.024 0.023 0.23E−3 0.42E−4 0.13E−3 0.0465
PI 0.0017 0.0093 0.0088. 0.12E−3 0.0050 0.0249

6 NMPC 0.24E−3 0.93E−4 0.16E−5 0.47E−6 0.87E−6 0.337E−3
PI 0.39E−4 0.28E−4 0.20E−4 0.68E−6 0.15E−3 0.235E−3

7 NMPC 0.24E−3 0.97E−4 0.61E−6 0.56E−7 0.72E−6 0.339E−3
PI 0.40E−4 0.28E−4 0.21E−4 0.69E−6 0.15E−3 0.237E−3

8 NMPC 0.081 0.094 0.26E−4 0.27E−4 0.0026 0.178
PI 0.16E−3 0.0026 0.0031 0.62E−5 0.0245 0.030

9 NMPC 0.121 0.138 0.99E−4 0.22E−4 0.0030 0.261
PI 0.24E−3 0.0044 0.0048 0.73E−4 0.0261 0.035

10 NMPC 0.085 0.092 0.56E−4 0.96E−5 0.0020 0.179
PI 0.011 0.0083 0.0099 0.0048 0.0227 0.057

at the latest time to the predicted outputs in the optimization
step. However, as noted before, this was not successful for
the evaporator system, and process state variables are used
to initialise the model M2 calculations in the optimal con-
trol problem. As reported by Meadows and Rawlings [26],
this does not guarantee an offset-free performance in the
presence of modelling errors. Results in Fig. 2 are consis-
tent with this. For cases without modelling error, the up-
dating of state variables may provide offset-free control by
NMPC. To verify this and to understand the offset problem,
several additional tests were conducted assuming that the
load disturbances are known (i.e.,QF is measured and hence
it can be used in the NMPC controller) thus reducing pro-
cess/model mismatch. The results (Fig. 2) show that offset
is practically removed if the disturbance inQF is measured
and used in the controller calculations. Since disturbances
in practice are unmeasured and unknown, a better technique
to eliminate the offset is necessary.

Kurtz and Henson [19] proposed a novel disturbance
modelling technique that ensures offset-free setpoint track-
ing for nonlinear processes. They incorporated a linear
MPC algorithm with conventional input–output linearizing
(IOL) controller to exploit the constraint handling capability
of the former. The MPC controller generates a proportional
state feedback which produces offset in the presence of pro-
cess/model mismatch. Offset is eliminated by augmenting a
disturbance vector with the state observer vector, that shifts
the target values of the desired states (through some observer
gain matrices) into the IOL block. Similar theory on distur-
bance model has been proposed for linear MPC, indepen-
dently by Campbell and Rawlings [3], who categorised the
disturbance models into three types, viz. generic disturbance



294 G.P. Rangaiah et al. / Chemical Engineering Journal 87 (2002) 285–299

model, output disturbance model and measured input
disturbance model. They used integrating disturbance mod-
els to achieve offset-free control. In another paper, Meadows
and Rawlings [26] discussed the steady state performance
of NMPC. They opined that steady state target optimization
technique provides a general framework to handle a larger
variety of process models than can be addressed with the
conventional NMPC feedback. However, it is not always
possible to have the correct knowledge of future steady state
conditions in the presence of process/model mismatch.

Fig. 4. Control performance of NMPC and PI for a simultaneous change in feed flow rate and a decrease in UA (Case 3).

In the context of linearizable systems, Sastry and Isidori
[35] discussed parameter adaptation approach for improving
control of nonlinear processes. This adaptation approach was
used by Iyer and Farell [14] to improve the performance of
IOL control of a reactor. In a parallel study, Huberman and
Lumer [13] introduced a simple adaptive control mechanism
into nonlinear systems where a parameter in the system is
updated using the difference between setpoint and output,
and its derivative. This approach is similar to the parame-
ter adaptation of Sastry and Isidori [35], and was used in
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the internal model control of nonlinear systems by Lakshmi
Narayanan et al. and Shukla et al. [20,36]. Hu and Rangaiah
[12] proposed a parameter adaptation law for internal model
control of nonlinear processes and studied its performance
theoretically as well as via simulation on typical processes.

3.4. Proposed adaptation

Motivated by the success of the parameter adaptation ap-
proach in the above studies, we propose a simple parameter

Fig. 5. Control performance of NMPC and PI for a step change in feed density (Case 5).

adaptation technique for eliminating the offset in NMPC.
Considering that frequent disturbances are mainly inQF,
this quantity has been chosen as the model parameter to
be updated irrespective of the actual disturbance in the real
process. The simple adaptation law is given as

dQFm

dt
= K(Yr − Yp) (29)

whereYr and Yp are the vectors representing setpoint and
(process) output variables. Eq. (29) provides updatedQFm
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for use in the model M2 for predicting outputs,Y in the
control objective,Φ (Eq. (28)). The main purpose of pa-
rameter adaptation here is to improve the performance of
NMPC. As such, the simple adaptation law may not estimate
the disturbance. The effectiveness of the proposed adapta-
tion will be evaluated for the 10 cases listed above, which
includes disturbances in quantities other thanQF as well as
setpoint changes.

Although K could be a 5× 5 gain matrix, in the present
study it is assumed to be a diagonal matrix to simplify the

Fig. 6. Control performance of NMPC and PI for a step change in the setpoint of product liquor density from FT #4 (Case 9).

task to choosing only five values. Since 1 h simulation of
the evaporator control by NMPC takes nearly 1 h of com-
putational time on the workstation, it is difficult to per-
form rigorous tuning ofK, e.g., by minimizing a suitable
integral error criterion. Hence,K is selected to eliminate
offset by a combination of physical insight and heuristics.
First, sign of each diagonal element is chosen by consid-
ering the response of model M2 to step changes inQF
(through a few open-loop simulations) and the sign of the
gain in the industrial PI controller (which indicates the effect
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of each manipulated variable on the corresponding output
variable). Next, a few closed-loop simulations are carried
out with different values forK and introducing a change in
QF. Fig. 3 shows the closed-loop responses for two sets:
K = diag[−50 + 50 − 50 + 50 + 50] and diag[−200+
200− 200+ 200+ 200]. (Different absolute value for each
element is possible but closed-loop responses in our trials
did not show significantly better performance.) Although
control with the secondK is better, the conservative setting

Fig. 7. Control performance of NMPC and PI for a step change in the setpoint of liquid level in FT #1 and of product liquor density from FT #4 (Case 10).

ofK = diag[−50+50−50+50+50] is selected for further
tests.

3.5. Performance of NMPC with adaptation

With the K reasonably tuned for one disturbance,
simulations are then carried out to examine control per-
formance of NMPC for other disturbances as well as set-
point changes (viz. cases 1–10). The results are compared
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with decentralized PI controllers, which are currently used
in the plant with controller gain,Kc = [−10,−10,−10,
−10,0.6] and integral time,τ i = [20,20,20,20,3]. Since
these may not be the optimal settings, PI controllers are
tuned by minimizing the sum of integral of squared errors
(ISE) of all the five output variables to change in the feed
flow rate (QF) from the nominal value of 37.7 to 39.7 (Case
1). Comparison of control by NMPC and PI controllers
to be discussed later, is based on ISE. For tuning PI con-
trollers, the simpler model M2 (and not M1) is used as the
“process” (since extensive tests on the real plant simulated
by model M1 in this study, are not possible), and mini-
mization of ISE is performed using Nelder–Mead technique
(i.e., fminsearch.m). Detailed results from the minimization
showed that reduction in ISE can be achieved but at the
expense of aggressive control action, which may not be ac-
ceptable in practice. Hence, PI controllers are tuned to give
total ISE (i.e., sum of ISEs for all output variables when
the controllers are implemented on the more detailed model
M1 as the “process”) comparable to that of NMPC for the
change in the feed flow rate (Case 1). These selected set-
tings are:Kc = [−53.28,−106.45,−93.62,−93.15,0.05]
and τ i = [2.528,19.53,10.13,0.2112,0.0501], which are
then implemented on the more detailed model M1. Tran-
sient responses of the output and manipulated variables
with these PI controllers, are also shown in Fig. 3.

Control performance of NMPC and decentralized con-
trollers for all the 10 cases is summarized in Table 2, which
shows ISE for each output variable as well as total ISE for
both NMPC and PI control in each case. As can be seen
from ISE values, changes in feed flow rate and density have
greater effect on control (cases 1–5) compared to changes
in feed temperature (cases 6 and 7). For all 10 cases, PI
control seems to be comparable to or better than NMPC in
terms of total ISE. However, NMPC consistently provides
smaller ISE inρ4 than PI. This is of practical significance
since variation inρ4 affects subsequent processing opera-
tions and hence is more important than that in levels (hi).
Note that PI controllers may be tuned differently in order to
achieve better control ofρ4; but this may be at the expense
of higher ISE in other outputs.

Transient responses of output and manipulated variables
by NMPC and PI control for selected cases are compared
in Figs. 3–7. From the responses for load disturbances
(Figs. 3–5 for cases 1, 3 and 5, respectively), it can be
seen that settling time and propagation of disturbance for
PI control are more than those for NMPC. The small offset
of less than 0.5% present inρ4 for control by NMPC (see
Fig. 5) persisted even after a long time, which may be due to
numerical errors and/or tolerances used in the optimization.
On the other hand, response ofρ4 by PI shows a large de-
viation from the setpoint for more than 10 h although there
was no offset eventually (not shown in Fig. 5). For setpoint
changes (Figs. 6 and 7 for cases 9 and 10 respectively),
NMPC provides faster action and thus faster response com-
pared to PI. Movement of some manipulated variables for

case 10 under PI control, is significantly large. Thus PI con-
trollers may have to be tuned differently for setpoint changes.

The major disadvantage of using NMPC is large com-
putation time. Because of the necessity of solving optimal
control problem on-line, the algorithm simulates model M2
again and again until optimality in manipulated variable is
reached. It is observed that around 10–12 h of real-time is
needed to execute 40 h of simulation on the Pentium III
workstation, whereas PI controller takes only a few minutes
of real-time for the same simulation run. However, this im-
plies that the NMPC can be employed to control a real-time
plant since chemical plants tend to have slow dynamics.

4. Conclusions

The feasibility and potential of NMPC for open-loop
unstable MIMO systems without stabilization is studied
by considering a multistage industrial evaporator system.
Initially, stable control by NMPC was obtained but steady
state offset was observed. A simple parameter adaptation
technique is proposed and successfully applied to obtain
offset-free control. The performance of NMPC for the
evaporator system is compared with that of well-tuned de-
centralized PI controllers. The results show that NMPC is
better than PI controllers in terms of reduced propagation
of disturbance and faster response. However, total ISE of
all output variables is generally smaller in the case of PI
controllers. Since both NMPC and PI controllers can be
tuned to achieve the desired objective, these two controllers
seem to be comparable for the evaporator system studied.
Further studies are required to improve NMPC for industrial
processes, particularly for open-loop unstable systems.
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